slo K(+) channel gene regulation mediates rapid drug tolerance.

نویسندگان

  • Alfredo Ghezzi
  • Yazan M Al-Hasan
  • Leo E Larios
  • Rudolf A Bohm
  • Nigel S Atkinson
چکیده

Changes in neural activity caused by exposure to drugs may trigger homeostatic mechanisms that attempt to restore normal neural excitability. In Drosophila, a single sedation with the anesthetic benzyl alcohol changes the expression of the slo K(+) channel gene and induces rapid drug tolerance. We demonstrate linkage between these two phenomena by using a mutation and a transgene. A mutation that eliminates slo expression prevents tolerance, whereas expression from an inducible slo transgene mimics tolerance in naive animals. The behavioral response to benzyl alcohol can be separated into an initial phase of hyperkinesis and a subsequent phase of sedation. The hyperkinetic phase causes a drop in slo gene expression and makes animals more sensitive to benzyl alcohol. It is the sedative phase that stimulates slo gene expression and induces tolerance. We demonstrate that the expression level of slo is a predictor of drug sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CREB regulation of BK channel gene expression underlies rapid drug tolerance.

Pharmacodynamic tolerance is believed to involve homeostatic mechanisms initiated to restore normal neural function. Drosophila exposed to a sedating dose of an organic solvent, such as benzyl alcohol or ethanol, acquire tolerance to subsequent sedation by that solvent. The slo gene encodes BK-type Ca(2+)-activated K(+) channels and has been linked to alcohol- and organic solvent-induced behavi...

متن کامل

Drug-Induced Epigenetic Changes Produce Drug Tolerance

Tolerance to drugs that affect neural activity is mediated, in part, by adaptive mechanisms that attempt to restore normal neural excitability. Changes in the expression of ion channel genes are thought to play an important role in these neural adaptations. The slo gene encodes the pore-forming subunit of BK-type Ca(2+)-activated K(+) channels, which regulate many aspects of neural activity. Gi...

متن کامل

A DNA Element Regulates Drug Tolerance and Withdrawal in Drosophila

Drug tolerance and withdrawal are insidious responses to drugs of abuse; the first increases drug consumption while the second punishes abstention. Drosophila generate functional tolerance to benzyl alcohol sedation by increasing neural expression of the slo BK-type Ca(2+) activated K(+) channel gene. After drug clearance this change produces a withdrawal phenotype-increased seizure susceptibil...

متن کامل

BK channels play a counter-adaptive role in drug tolerance and dependence.

Disturbance of neural activity by sedative drugs has been proposed to trigger a homeostatic response that resists unfavorable changes in net cellular excitability, leading to tolerance and dependence. The Drosophila slo gene encodes a BK-type Ca(2+)-activated K(+) channel implicated in functional tolerance to alcohol and volatile anesthetics. We hypothesized that increased expression of BK chan...

متن کامل

The role of the BK channel in ethanol response behaviors: evidence from model organism and human studies

Alcohol abuse is a significant public health problem. Understanding the molecular effects of ethanol is important for the identification of at risk individuals, as well as the development of novel pharmacotherapies. The large conductance calcium sensitive potassium (BK) channel has emerged as an important player in the behavioral response to ethanol in genetic studies in several model organisms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 49  شماره 

صفحات  -

تاریخ انتشار 2004